If it's not what You are looking for type in the equation solver your own equation and let us solve it.
150t-5t^2=3
We move all terms to the left:
150t-5t^2-(3)=0
a = -5; b = 150; c = -3;
Δ = b2-4ac
Δ = 1502-4·(-5)·(-3)
Δ = 22440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{22440}=\sqrt{4*5610}=\sqrt{4}*\sqrt{5610}=2\sqrt{5610}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(150)-2\sqrt{5610}}{2*-5}=\frac{-150-2\sqrt{5610}}{-10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(150)+2\sqrt{5610}}{2*-5}=\frac{-150+2\sqrt{5610}}{-10} $
| 9m-18+3m=7m+43 | | 5r^2+26r+24=0 | | U=24-8u | | 13/18*n=91 | | F(x)=x^2-x-12/x+1 | | 6x-9x=-12+x | | 4-1d=1-(1d-4) | | 6=4-4/3x | | 0=8t^2-64t | | 38.4=x+170 | | 3x-2x-6=7-4x-14 | | X^2+2x-4x=0 | | 90+0.80x=30+0.90x | | 2=4-4/3x | | X+1=6/x | | 3x-2x-6=7+-4x-14 | | 36-3x=2·24 | | 20=5t^2-30t+45 | | -1+7/9=x | | 15-2/3x=20 | | 9-4x=6x+39 | | -4(x+5)=2(-2x-10) | | 38.4=x-170 | | .5x+.7=21 | | 2x3x+1=12 | | 10/8=m/28 | | 5x-6=12x+8 | | 1x/2=-7 | | 9+18x=0 | | 13-5x+8=-2 | | 1+6x+11x2+6x3+x4=0 | | (1/4^x)=256 |